跳转至

辐射度量学

为了物理正确地计算光照,引入辐射度量学(Radiometry)。

立体角

Angles and Solid Angles
Angles and Solid Angles

  • 角(Angle)是弧长除以半径,\(\theta=\dfrac{l}{r}\), 单位是 radians (rad),一个圆是 \(2 \pi\) rad
  • 立体角(Solid Angle)是球面上一块面积除以球径平方, \(\Omega=\dfrac{A}{r^2}\), 单位是 steradians (sr),一个球是 \(4 \pi\) sr

微分

Differential Solid Angles
Differential Solid Angles

球面上的面积微元

\[ \begin{align} \mathrm{d}A&=(r \mathrm{d}\theta)(r \sin \theta \mathrm{d}\phi)\\ &=r^2 \sin \theta \mathrm{d}\theta \mathrm{d}\phi \end{align} \]

微分立体角

\[ \begin{align} \mathrm{d}\omega&=\dfrac{\mathrm{d}A}{r^2}\\ &=\sin \theta \mathrm{d} \theta \mathrm{d} \phi \end{align} \]

球坐标系中 \(\theta,\phi\) 可以确定一个方向,通常用 \(\omega\) 表示这个方向的单位向量。

积分

对整个球 \(S^2\) 积分

\[ \begin{align} \Omega&=\int_{S^2} \mathrm{d}\omega\\ &=\int_{0}^{2\pi}\int_{0}^{\pi} \sin \theta \mathrm{d}\theta \mathrm{d} \phi\\ &=4\pi \end{align} \]

可以验证一个球是 \(4\pi\) sr。

Radiant energy

Radiant energy is the energy of electromagnetic radiation.

\(Q\) 表示,单位是焦耳(Joule)。

Radiant flux (power)

Radiant flux (power) is the energy emitted, reflected, transmitted or received, per unit time.

\[ \Phi=\frac{\mathrm{d}Q}{\mathrm{d}t} \]

单位时间到达某一面积的 energy,单位是瓦特(Watt)。

光度学(Photometry)中类似的量叫 Luminous flux,单位是流明(lumen, lm) 。

Lambert's Cosine Law

Lambert's Cosine Law
Lambert's Cosine Law

类似磁通量,如果左边的 Radiant flux (power) 为 \(\Phi_1\),那么中间 \(\Phi_2=\dfrac{\Phi_1}{2}\), 右边 \(\Phi_3 = \Phi_1 \cdot \cos \theta\)

Radiant Intensity

Radiant Intensity: Light Emitted From A Source
Radiant Intensity: Light Emitted From A Source

The radiant (luminous) intensity is the power per unit solid angle emitted by a point light source.

\[ I(\omega)=\frac{\mathrm{d}\Phi}{\mathrm{d}\omega} \]

单位是 \(W \cdot sr^{-1}\)。对于各向同性点光源(Isotropic Point Source)

\[ \begin{align} \Phi &= \int_{S^2} I \mathrm{d} \omega = 4\pi I\\ \\ I &= \frac{\Phi}{4\pi} \end{align} \]

光度学(Photometry)中类似的量叫 Luminous intensity,单位是坎德拉 \(cd = candela = lm \cdot sr^{-1}\)

Irradiance

Irradiance: Light Falling On A Surface
Irradiance: Light Falling On A Surface

The irradiance is the power per unit area incident on a surface point.

\[ E(\mathbf{x})=\frac{\mathrm{d}\Phi(\mathbf{x})}{\mathrm{d}A} \]

单位是 \(W \cdot m^{-2}\)。如果把 \(\Phi(\mathbf{x})\) 类比为磁通量,\(E(\mathbf{x})\) 相当于 \(B \cos \theta\),是隐含了 Lambert's Cosine Law 中的 \(\cos \theta\) 的。

光度学(Photometry)中类似的量叫 Illuminance,单位是勒克斯 \(lx=lux=lm \cdot m^{-2}\)

Falloff

Irradiance Falloff
Irradiance Falloff

Irradiance 会随距离衰减,但 Radiant Intensity 是不会衰减的。

Radiance

Radiance is the fundamental field quantity that describes the distribution of light in an environment

  • Radiance is the quantity associated with a ray
  • Rendering is all about computing radiance

The radiance (luminance) is the power emitted, reflected, transmitted or received by a surface, per unit solid angle, per projected unit area.

Radiance: Light Traveling Along A Ray
Radiance: Light Traveling Along A Ray

\[ L(p,\omega)=\frac{\mathrm{d}^2 \Phi(p,\omega)}{\mathrm{d}\omega \mathrm{d}A \cos \theta} \]

单位是 \(W \cdot sr^{-1} \cdot m^{-2}\)

光度学(Photometry)中类似的量叫 Luminance,单位是 \(cd \cdot m^{-2} = lm \cdot sr^{-1} \cdot m^{-2} = nit\)

Incident Radiance

一种理解方式是把 \(\mathrm{d}A\) 除上去,得到的 \(\mathrm{d} E(p,\omega)\) ,它是 \(p\) 处从方向 \(\omega\) 到面积 \(\mathrm{d}A\) 的 Irradiance。由于 Lambert's Cosine Law, \(\mathrm{d}E(p,\omega)\) 隐含了一个和物体朝向有关的 \(\cos \theta\),但 Radiance 描述的是光线的性质,不应该和某个物体有关, 所以要除以 \(\cos \theta\)\(\mathrm{d}E(p,\omega)\) 是 per unit area 的量,除以 \(\cos \theta\) 后, \(L(p,\omega)\) 就成了 per projected unit area 的量。

\[ L(p,\omega)=\frac{\mathrm{d} E(p,\omega) / \cos \theta}{\mathrm{d}\omega} \]

这个公式一般用于描述 Incident Radiance: Irradiance per unit solid angle arriving at the surface. 进而计算入射的 Irradiance。

\[ \begin{align} \mathrm{d} E(p,\omega) &= L_i(p,\omega) \cos \theta \mathrm{d} \omega\\ \\ E(p) &=\int_{H^2}L_i(p,\omega) \cos \theta \mathrm{d} \omega \end{align} \]

在单位半球上积分
在单位半球上积分

Exiting Radiance

另一种理解方式是把 \(\mathrm{d}\omega\) 除上去,得到 \(\mathrm{d}I(p,\omega)\),然后除以 \(\mathrm{d}A\) 的投影面积。

\[ L(p,\omega)=\frac{\mathrm{d} I(p,\omega)}{\mathrm{d}A \cdot \cos \theta} \]

这个公式一般用于描述 Exiting Radiance: The intensity per unit projected area leaving the surface.

参考


相关文章